佐倉サイエンス化学分野 第1回

テーマ: コンブからヨウ素 I2 を取り出す

1	背黒	:	栄養と	b	7	ത	$\boldsymbol{\Xi}$	ウ	素
_		•			_				

- ・細胞に作用し、代謝を上昇させ成長に影響を与える甲状腺ホルモン(チロキシンなど)の構成成分
- ・海中に多く存在し、海藻(特にコンブ)や魚に多く含まれる。
- ・日本では海産物を主とした食習慣があり、ヨウ素不足が問題となることはない (かつて内陸ではヨウ素不足の傾向があった。成長期の子ども、欠食・偏食などで不足する可能性)

2 実験器具・薬品

器具:蒸発皿(1)、漏斗(1)、漏斗台(1)、ビーカー(4)、試験管(2)、るつぼばさみ(1)、 駒込ピペット(5)、ホールピペット(1)、温度計、安全ピペッター(1) 試験管ばさみ(1)、三脚、金網、マッチ、ピンセット(1)、乳鉢(1)、乳棒(1)

試薬:コンブ、3%過酸化水素水、1mol/L希硫酸、

溶液

3 実験手順

- 1. 細かく切ったコンブを約4g蒸発皿に入れ、強熱して灰化する。
- 2. 灰をるつぼバサミを使い、乳鉢に入れて、乳棒で細かく砕く。
- 3. 乳鉢からビーカーに入れて、水を 30mL 加えて熱し、2~3 分間沸騰させる。 (この時点でコンブ中に化合物として含まれてるヨウ化物イオン I が溶出される)
- 4. 溶液をろ過し、ろ液に希硫酸 1mL、過酸化水素 5 滴を加え、ヨウ素を析出させ ## D1 =

る。 ② 教科書 P1/8	
相手に電子をあげる	相手から電子をもらう

- ⇔ 自分は酸化されている。相手を還元している
- ⇔ 自分は還元されている。相手を酸化している

⇔ 還元剤(R)

- ⇔ 酸化剂 (O)
- 一学では酸化還元の定義は、酸素の得る・失うによる定義だったが、高校では電 子を得る・失う(=与える)による定義が主流かつ万能である。

Q:	│の水溶液に二酸化硫黄 SO₂の水溶液を加えると? │

3.3 で作成したろ液を試験管 2 本に等量ずつ分ける。							
1 本には [溶液を加え	える。→		反応			
」 試薬を加えた試験管を 80℃に熱した熱水の入ったビーカーに入れ、色を確認する。 そして、熱した試験管をゆっくりと氷水の入ったビーカーに入れ、色を確認する。							
Q:加熱により、なぜこのような色の変化が起こるのか? ヒント:デンプンの構造、熱運動							
この実験により、コンブからヨウ素を取り出せていることが確認できた。							
感想欄							
	目的を十分達成できた	目的をほぼ達成できた	目的を達成	できなかった			
【知識・理解】	ヨウ素に関する基本的な	ヨウ素に関する基本的な	ヨウ素に関す	る基本的な知識			
	知識を十分に理解できた。	知識を理解できた。	を十分に理解で	できなかった。			
【知識・理解】	酸化還元に関する基本的な	酸化還元に関する基本的	酸化還元に関	する基本的な知			
E/ 14 PM - 17 JT 1	知識を十分に理解できた。	な知識を理解できた。	識を十分に理解	解できなかった。			

1年日組 番 氏名

器具を正しく用いて、協働 器具を正しく用いて、協働

既知の呈色反応の仕組み

を、理解できた。

し、実験操作が主体的にでし、実験操作ができた。

【技能】

【思考】

きた。

既知の呈色反応の仕組み

を、十分に理解できた。

器具を正しく用いて、実験操作

既知の呈色反応の仕組みを、理

ができなかった。

解できなかった。